I, INSTITUTE of

TECHNOLOGY

CARLOW

Institidid Teicneolaiochta Cheatharlach

Coeliac Disease Symptom Tracker

Design Document

Student: Niamh Coleman (C00205225)
Supervisor: Joseph Kehoe

Date: 14/12/2018

Contents

T T [N o1 AT] o PSPPSR 3
0] 01 =T o USRS 4
SCrEeN-FIOW QIAQIAIMovieii ettt sr e et e s e e s reenaeaneenneas 4
DALADASE ...ttt bbb R et b e bbbt e s 6
SYSIEM AFCHITECTUIE ...t e s e reesteaneenneas 6
Database LaYOUL...........ccueiieiieiieiieie ettt st te et e be e e e e e sreenreeneeareenne e 8
LT Y] TP PPV PTUTRPUPTOPRTRROS 10
Database TahIES........ouiiieiiee et nre s 10

L0 LTS G I o] ST 10
SYMPLOMS TADIE ... 12
EMOLIONS TADIE... .ottt sre e enes 13
ENEFIES TADIE....ceieeee e 14
SYMPLOMENLIY TaDIE ... 16

Introduction

After completion of this document, the reader will have a thorough understanding of the work
required to create the application in full. This document will equip the reader to develop the
application decribed herein, with a thorough understanding of the internal architecture and user
interface layout. The learning outcomes of this document will be covered in three sections;
front-end, database and server. The front-end section will cover the user interface layout and
screen navigation of the application. The database section will cover an overview of the entire
databse and the subsection of it that is being used by this project. The server section of the
document will contain the code for the functions that the application needs to carry out against
the database. This information will enable the reader to develop this application in its entirety.
Previous documentation for this project has defined the main functionality and use cases of this
application. The application will allow users to track their physical symptoms and emotions
relating to coeliac disease. This application will provide information that is crucial to their
continued wellbeing by allowing the individual to keep track of the symptoms that they possess
and the severity of those symptoms. The application will be cross-platform and will consider
ease-of-use to be a top priority.

Front-end

Screen-flow diagram

The application follows a simple navigation system where all pages can be accessed via the
tabs at the top of the screen. This navigation style is used due to how easy it is for a user to
intuitively use the application. The simple user interface allows the user to carry out functions
quickly. Due to the nature of the application, this is extremely important. Being able to quickly
navigate and carry out objectives within the application helps encourage the user to use the
application consistently and often.

Plokse Select & Day LIS

Change Pasrwerd

Log Out

The tab bar will always be present at the top of the screen (figure 1). This menu allows the user
to intuitively access all pages without having to navigate a complex screen access layout.

The application utilises a menu bar which will always be present at the bottom of the screen
(figure 1). This menu allows the user to easily access all pages without having to navigate a
complex screen access layout. The current page open will be indicated by a green background
colour. This approach is familiar to all users and requires minimum user training.

Account

Figure 1.

Database

A database is an organised collection of data with the purpose of storage and retrieval of
information. In this application, the database will serve the purpose of storing information
regarding users and their symptoms and emotions. This will be done by creating multiple tables
within a database and using the combined information stored there to provide the functionality
required by the application.

System Architecture

The system is comprised of a MySQL database, a Python MySQL application programming
interface and a ReactJS user interface. These technologies were chosen by the leaders of the
Erasmus+ project. The database is common among all students involved with the Erasmus+
project. The API is written using Python MySQL. An API is a set of operations that can be
used by the application to carry out its primary functions. The API contains functions that add,
delete, update and read from the database and return that information for use by the API. The
user interface uses the API by making calls and requests and receiving responses in JSON
format.

MySOL Database

3

@ python

Flask/MySQL Back-end API

71> React

ReactJS Front-end

aEns
L Bl
EE8

Application

Database Layout

The database is being shared among all the students involved in the Erasmus+ project. The
following figure (figure 2) is the subset of the database that is used in this project. Figure 3
illustrates the database in its entirety.

- a w .
= =) = — m 18]
= = m c
=1 =
a m T
2
|
=y
= 'EI
(1] o
o I Q
E = ® B E E
EI = =2 o = | 2]
1 i
e o P - B = I
E ¥ E E E E E 8
w w =] (] (] (] '] =
I= 3 5
o [o
: I
m =]
- o o L]
g 5 0§ % E v
L L L L wl
=) = [- e] €
I [[=
0 0 1) s— EI C| 1-5|
E =
El o= = =
W 5] [Py
o
I
=]
v o 2
= [I
- m F m
= E i [&1
1~ \I ‘-I ‘-I
u o w w
v A Il
= E = =l
e
C _\. C
o
[il
£ E
= =
)
8 E E
= [=}
s_ [= =
E 1 =8 1
E E E
S = = =
(5] (] 5]

JELDUBA fuoSEE
1TaT)-T vale
JELIIEN uoisanb
il B

suopsanb zZinb

pi"Ja3sn

JEYIIEA ed afsw

JuiA e
JELIIEA UL S SUy o0
JEUIIEA SJY 3L Suyond
JELIBA uonduosap
JELIBA BWEU
u piradizal

Pl oA

pr&auz

oS

Pi

JOMSUE

ul plruoisanbzinb

siamsue nnb

SWEU

BT P uipasdu)

Jua|paJduy

JBLDUEA SWELTOWS
u1 pI owa

SUO[IOLB

apn

P!

1w Dl J3=n

BD o5
aln awn

E T

yied aZzw
1w Eall

uonduosap

]l

1w pir Uz

JzapWAE

Be WS

ul pIrwis

U pi-adizss
wau
U Jagunudms
u prrdais

daysadpay

U pirwids
U a8s us woydwis

u pAUE wiE

IEWAJ3sn
SLWEUTIFEN

ul p14@sn

Figure 3.

Server

Database Tables

Users Table

The users table will contain information on all users registered with the application. Users will
be added to the users table upon registering with the application. The table will contain four
columns; user ID, user name, email address and password. SQL statements are required for the
following actions:

e Initial creation of the users table.

e Adding a new user to the table upon user registration.
e Change user password.

e Return account information about a specific user.

Field Name Field Type Field Description

user_id INT (6) A unique identification number that serves as
primary key.

user_name VARCHAR(10) This field contains the name of the user entered at
registration.

user_email VARCHAR (50) This unique field contains the email address

entered by the user at registration.
user_password VARCHAR (50) This field contains the password entered by the user
at registration.

Table Creation:

CREATE TABLE users (

user_id INT(6) UNSIGNED AUTO_INCREMENT PRIMARY KEY,
user_name VARCHAR(10),

user_email VARCHAR(50) UNIQUE,

user_password VARCHAR(50)

);

Adding a User (Registration Use Case):

INSERT INTO users (user_name, user_email, user_password)

VALUES (%name, %email, %password);

10

Change User Password (Change Password Use Case):

UPDATE users SET user_pass = %newpass WHERE user_id = %user_id;

Return User Information (Account Information Use Case):

SELECT user_name, user_email FROM users WHERE user_id = %user _id;

11

Symptoms Table

The symptoms table contains information on all symptoms. Users may not add new symptoms
to the table. If there is a popular symptom that does not exist in the database, it will be added
to the database by the developers. The table will contain three columns; a symptom ID,
symptom name and a description of the symptom. SQL statements are required for the
following actions:

e Initial creation of the table.
e Adding a symptom to the table.
e Retrieving all symptom names for use by the application.

Field Name Field Type Field Description

sym_id INT (6) A unique identification number that serves as
primary key.

sym_name VARCHAR (20) This unique field contains the name of the
symptom.

sym_desc VARCHAR (50) This field contains a brief description of the
symptom.

Table Creation:

CREATE TABLE symptoms (

sym_id INT(6) UNSIGNED AUTO_INCREMENT PRIMARY KEY,
sym_name VARCHAR(20) UNIQUE,

sym_desc VARCHAR(50)

);
Adding a New Symptom (Logging Symptoms Use Case):
INSERT INTO symptoms (sym_name, sym_desc)

VALUES (%example, %example);

Retrieving all Symptom Names (Creating User Interface):

SELECT sym_name FROM symptoms;

12

Emotions Table

The emotions table contains information on all emotions in the database. Users may not add
new emotions to the table. If there is a popular emotion that does not exist in the database, it
will be added to the database by the developers. The table will contain three columns; an ID,
emotion name and a description of the emotion. SQL statements are required for the following
actions:

e Initial creation of the table.
e Adding an emotion to the table.
e Retrieving all emotion names for use by the application.

Field Name Field Type Field Description

emo_id INT (6) A unique identification number that serves as
primary key.

emo_name VARCHAR (20) This unique field contains the name of the
emotion.

Table Creation:

CREATE TABLE emotions (

emo_id INT(6) UNSIGNED AUTO_INCREMENT PRIMARY KEY,
emo_name VARCHAR(20) UNIQUE

);
Adding a New Emotion (Creating User Interface):
INSERT INTO emotions (emo _name)

VALUES (%example);

Retrieving all Emotion Names (Creating User Interface):

SELECT emotion _name FROM symptoms;

13

Entries Table

The entries table contains information on all entries by a user in the database. The table will
contain five rows; a user ID, a datetime, a list of the symptoms entered, a list of the emotions
entered, and any notes added by the user. SQL statements are required for the following actions:

e Initial creation of the table.
e Logging an entry in the table.
e Retrieving an entry from the table.

Field Name Field Type Field Description

user_id INT (6) The ID associated with the user making the
entry.

entry_id INT (6) The wunique ID associated with the
specifics of the entry (auto increment).

entry_date DATETIME() The datetime when the entry was submitted
by the user.

entry_tod VARCHAR(10) Can consist of any one of the following:
morning, afternoon. evening, night.

symptom_entry id INT(6) The ID associated with the specifics of the
symptom(s) entered by the user.

entry_emo_id INT(6) The ID associated with the specifics of the
emotion(s) entered by the user.

notes VARCHAR (25) Any notes entered by the user associated

with the current entry.

Table Creation:

CREATE TABLE entries (

user_id INT(6),

entry_id INT(6) AUTO_INCREMENT PRIMARY KEY,
entry_date DATE,

entry_tod VARCHAR(10),

symptom_entry_id INT(6),

entry_emo_id INT(6),

notes VARCHAR (25)

);

14

Adding a New Entry (Logging Symptoms Use Case):
Firstly, add the entry to the entries table:
INSERT into entries (user_id, entry_date, entry_tod, symptom_entry _id, entry_emo_id,notes)

VALUES (%user_id, %entry date, %entry tod, %symptom_entry id, %entry_emo_id,
%notes);

Secondly, add each symptom to the symptomEntry table:

For row in symptomsL.ist:
INSERT INTO symtomEntry (sym_entry_id, sym_entry_sev, sym_id)
VALUES (%sym_entry_id, %sym_entry_sev, %sym_id);

Selecting an Entry (View History Use Case):

SELECT * FROM symptoms WHERE userID = $id AND entryDate = $dateChosen AND
entryTime = $timeChosen;

15

symptomEntry Table

The entries table contains information on all symptoms entered by a user in an entry, as well
as their corresponding severity.

Field Name Field Type Field Description

sym_entry _id INT (6) Value corresponds with the
symptom_entry_id in the Entries
table.

symptom_entry sev INT (6) This field contains the severity of the
symptom entry i.e. low, moderate,
severe.

sym _id INT (6) Value corresponds with a symptom ID

in the Symptoms table.

Table Creation:

CREATE TABLE symptomEntry (
sym_entry_id INT(6),
symptom_entry_sev INT (6),
sym_id INT(6)

);

Adding a New Entry (Logging Symptoms Use Case):

For row in symptomsList:
INSERT INTO symtomEntry (sym_entry_id, sym_entry sev, sym_id)
VALUES (%sym_entry_id, %sym_entry_sev, %sym_id);

16

	Introduction
	Front-end
	Screen-flow diagram

	Database
	System Architecture
	Database Layout

	Server
	Database Tables
	Users Table
	Symptoms Table
	Emotions Table
	Entries Table
	symptomEntry Table

